
www.manaraa.com

Competitive On-Line Algorithms for Distributed Data Management�Carsten Lundy , Nick Reingoldy, Je�ery Westbrookyz , AND Dicky YanxAbstract. Competitive on-line algorithms for data management in a network of processorsare studied in this paper. A data object such as a �le or a page of virtual memory is to be readand updated by various processors in the network. The goal is to minimize the communicationcosts incurred in serving a sequence of such requests. Distributed data management on importantclasses of networks|trees and bus based networks, are studied. Optimal algorithms with constantcompetitive ratios and matching lower bounds are obtained. Our algorithms use di�erent interestingtechniques such as work functions [9] and \factoring."Key words. on-line algorithms, competitive analysis, memory management, data management.AMS subject classi�cations. 68Q20, 68Q25.1. Introduction. The management of data in a distributed network is an im-portant and much studied problem in management science, engineering, computersystems and theory [3, 11]. Dowdy and Foster [11] give a comprehensive survey ofresearch in this area, listing eighteen di�erent models and many papers. A data ob-ject, F, such as a �le, or a page of virtual memory, is to be read and updated by anetwork of processors. Each processor may store a copy of F in its local memory,so as to reduce the time required to read the data object. All copies must be keptconsistent, however; so having multiple copies increases the time required to write tothe object. As read and write requests occur at the processors, an on-line algorithmhas to decide whether to replicate, move, or discard copies of F after serving eachrequest, while trying to minimize the total cost incurred in processing the requests.The on-line algorithm has no knowledge of future requests, and no assumptions aremade about the pattern of requests. We apply competitive analysis [6] to such analgorithm.Let � denote a sequence of read and write requests. A deterministic on-linealgorithm A is said to be c-competitive, if, for all �, CA(�) � c �OPT (�) + B holds,where CA(�) and OPT (�) are the costs incurred by A and the optimal o�-line solutionrespectively, and c and B are functions which are independent of �, but which maydepend upon the input network and �le size. If A is a randomized algorithm, wereplace CA(�) by its expected cost and consider two types of adversaries: the obliviousadversary chooses � in advance, and the more powerful adaptive on-line adversarybuilds � on-line, choosing each request with knowledge of the random moves madeby A on the previous requests. The oblivious adversary is charged the optimal o�-line cost, while the adaptive on-line adversary has to serve � and be charged on-line.(See Ben-David et al. [6] for a full discussion of di�erent types of adversaries.) Analgorithm is strongly competitive if it achieves the best possible competitive ratio.In this paper, we focus on two important classes of networks: trees and theuniform network. A tree is a connected acyclic graph on n nodes and (n � 1) edges;� A preliminary version of this paper has appeared in [19].y Research, AT&T Labs, 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636, U.S.A. e-mail:lund@research.att.com, reingold@research.att.edu, and westbrook@research.att.comz This work was performed while the author was at Yale University. Research partially supportedby NSF Grant CCR-9009753.x Department of Operations Research, AT&T Labs, Room 3J-314, 101 Crawfords Corner Road,Holmdel, NJ 07733-3030, U.S.A. This work was performed while the author was at Yale University.Research partially supported by Fellowships from Yale University. e-mail:yan@att.com1

www.manaraa.com

2 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANthe uniform network is a complete graph on n nodes with unit edge weights. Weobtain strongly competitive deterministic and randomized on-line algorithms for theseclasses.Our algorithms use di�erent interesting techniques such as o�set functions and\factoring." Competitive on-line algorithms based on o�set functions have been foundfor the 3-server [9] and the migration problems [10]. An advantage of these algorithmsis they do not need to record the entire history of requests and the on-line algorithm,since decisions are based on the current o�set values which can be updated easily.Factoring is �rst observed in [7] and used in [10, 17]. The idea is to break downan on-line problem on a tree into single edge problems. Thus strongly competitivestrategies for a single edge is generalized to a tree. Our algorithms are stronglycompetitive for speci�c applications and networks, and also illustrate these two usefultechniques. Our randomized algorithm for �le allocation is barely random [20], i.e.,it uses a bounded number of random bits, independent of the number of requests. Arandom choice is made only at the initialization of the algorithm, after which it runsdeterministically.1.1. Problem Description. We study three variants of distributed data man-agement: replication [1, 7, 17], migration [7, 10, 22] and �le allocation (FAP) [2, 5].They can be can be described under the same framework. We are given an undirectedgraph G = (V;E) with non-negative edge weights and jV j = n, where each node rep-resents a processor. Let F represent a data �le or a page of memory to be stored inthe processors. At any time, let R � V , the residence set, represent the set of nodesthat contain a copy of F. We always require R 6= ;. Initially, only a single node vcontains a copy of F and R = fvg.A sequence of read and write requests occur at the processors. A read at processorp requests an examination of the contents of some data location in F ; a write atprocessor p requests a change to the contents of some location in F. The locationidenti�es a single word or record in F . A read can be satis�ed by sending a messageto any processor holding a copy of F ; that processor then returns the informationstored in the requested location. A write is satis�ed by sending an update message toeach processor holding a copy F , telling it how to modify the desired location. Aftera request is served, the on-line server can decide how to reallocate the multiple copiesof F.Let D 2 Z+ be an integer constant, D � 1, which represents the number ofrecords in F.1 The costs for serving the requests and redistributing the �les are asfollows. Service Cost: Suppose a request occurs at a node v. If it is a readrequest, it is served at a cost equal to the shortest path distance fromv to a nearest node in R; if it is a write request, it is served at a costequal to the size of the minimum Steiner tree2 that contains all thenodes in R [fvg.Movement Cost: The algorithm can replicate a copy of F to a nodev at a cost D times the shortest path distance between v and thenearest node with a copy of F ; it can discard a copy of F at no cost.A �le reallocation consists of a sequence of zero or more replications and discards of1 R, Z+, and Z+0 represent the sets of reals, positive integers and non-negative integers,respectively.2 See section 2 for a de�nition.

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 3copies of F . The replications and allocations can be done in any order as long as theresidence set has size at least 1. The movement cost incurred during a reallocation isequal to the total sum of all replication costs.The replication and migration problems are special cases of �le allocation. Formigration, we require jRj = 1. For replication, all the requests are reads, and it can beassumed that all replicated copies of F are not discarded. The (o�-line) optimizationproblem is to specify R after each new request is served so that the total cost incurredis minimized. For on-line replication, we only consider competitive algorithms thathave B = 0 in the inequality above; otherwise a trivial 0-competitive algorithm exists[7]. Following previous papers on allocation and related problems, we adopt a\lookahead-0" model. In this model, once a request is revealed, the on-line algorithmmust immediately pay the service cost before making any changes to the residenceset. One may contrast lookahead-0 with a lookahead-1 model, in which the algorithmmay change the residence set before paying the service cost. We discuss the lookaheadissue further below, together with some implementation issues.1.2. Previous and Related Results. Black and Sleator [7] were the �rst touse competitive analysis to study any of these problems, giving strongly 3-competitivedeterministic algorithms for �le migration on trees and uniformnetworks, and strongly2-competitive deterministic algorithms for replication on trees and uniform networks.Replication: Imase and Waxman [14] showed that a greedy algorithm for buildingSteiner trees on-line is �(logn)-competitive, where n is the number of nodes, andthat this ratio is optimal within constant factors for general networks. This algorithmis the basis of a solution for on-line replication in general networks. Koga [17] gaverandomized algorithms that are 2-competitive and 4-competitive against an adaptiveon-line adversary on trees and circles, respectively. He also obtained a randomizedalgorithmwith a competitive ratio that depends only onD and approaches (1+1=p2)as D grows large, against an oblivious adversary on trees.Migration: Westbrook [22] obtained a randomized algorithm for uniform networkswith a competitive ratio that depends only on D and approaches ((5 + p17)=4) asD grows large, against an oblivious adversary, For general networks, Westbrook [22]obtained a strongly 3-competitive randomized algorithm against an adaptive on-lineadversary. He also obtained an algorithm against an oblivious adversary with a com-petitive ratio that depends only on D and approaches (1+�)-competitive as D growslarge, where � � 1:62 is the golden ratio. Chrobak et al. [10] studied migration on var-ious classes of metric spaces including trees, hypercubes, meshes, real vector spaces,and general products of trees. They gave strongly (2+1=2D)-competitive randomizedalgorithms for these spaces, (2+1=2D)-competitive deterministic algorithms for someof these spaces, and a general lower bound for deterministic algorithms of (85=27).Recently, Bartal et al. [4] obtained a 4:086-competitive deterministic algorithm.File Allocation: For general networks, Awerbuch et al. [2] and Bartal et al. [5] giveO(logn)-competitive deterministic and randomized algorithms against an adaptiveon-line adversary, respectively. Westbrook and Yan [23] show that Bartal et al.'salgorithm is O(logd(G))-competitive on an unweighted graph with diameter d(G),and there exists a O(log2 d(G))-competitive deterministic algorithm. Bartal et al.also �nd a (3 +O(1=D))-competitive deterministic algorithm on a tree, and strongly3-competitive randomized algorithms against an adaptive on-line adversary on a treeand uniform network. Since replication is a special case of �le allocation, these upperbounds are also valid for replication when the additive constant B is zero.

www.manaraa.com

4 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANReplication Migration File AllocationDeterministic uniform 2 [7] 3 [7] 3 [5]tree 2 [7] 3 [7] 3�Randomized uniform eD=(eD � 1)� 2 + 1=(2D)� ?tree eD=(eD � 1)� 2 + 1=(2D) [10] 2 + 1=D�� this paper Table 1The State of the Art: Trees and Uniform Networks. Note eD = (1 + 1=D)D.1.3. New Results. This paper contributes the following results.� For on-line �le allocation on a tree, we give a strongly 3-competitive deter-ministic algorithm and a (2+1=D)-competitive randomized algorithm againstan oblivious adversary, and show that this is optimal even if G is an edge.� For uniform networks, we show that the o�-line �le allocation problem canbe solved in polynomial time. We give a strongly (2 + 1=(2D))-competitiverandomized on-line algorithm for migration against an oblivious adversary onthe uniform network.� For the replication problem, we show that the o�-line problem is NP-hard; thisimplies the �le allocation problem is also NP-hard. We obtain randomizedalgorithms that are (eD=(eD�1))-competitive against an oblivious adversaryon a tree and a uniform network; this is optimal even if G is a an edge.(Albers and Koga [1] have independently obtained the same results for on-line replication using a di�erent method.)� We show that no randomized algorithm for replication on a single edge canbe better than 2-competitive against an adaptive on-line adversary. ThusKoga's [17] algorithm for replication on a tree is strongly competitive.Table 1 summarizes the competitive ratios of the best known deterministic andrandomized algorithms against an oblivious adversary for replication, migration, and�le allocation on trees and uniform networks. They are all optimal.1.4. Lookahead and Implementation Issues. As stated above, we adoptthe lookahead-0 model that has been used in all previous work on allocation and itsvariants. Studies of some other on-line problems, however, have used a lookahead-1model, and in this subsection we comment brie
y on the distinction.In a lookahead-1 model of allocation, some request sequences could be servedby an on-line algorithm at a lower cost than would be possible in the lookahead-0model. For example, if a write request occurs, a lookahead-1 algorithm can drop allbut one copies of F before servicing the request, thereby reducing the service cost.The lookahead-0 model is more appropriate for �le allocation, however, because theservice cost models both the message cost of satisfying a request, which includes thecost of transmitting an answer back to a read request or passing an update on toall copies, and the message cost of the control messages that must be transmitted inorder for the algorithm to learn of new requests and to implement its replication anddrop decisions. Speci�cally, we assume that a new replication will not occur unless atleast one member of the replication set has been told of a new request, and a processorwill not discard a copy unless it has been told of a new write request.We claim that for large values ofD the optimal competitive ratio in a lookahead-1model is not materially di�erent than the optimal competitive ratio in a lookahead-0model. In particular, if there is a c-competitive algorithm using lookahead-1, thereis a (c + 2=D)-competitive algorithm using lookahead-0. The lookahead-0 algorithm

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 5simulates the lookahead-1 algorithm by keeping the same residence set. When thelookahead-1 algorithm saves service cost on a read, the amount saved can be no morethan the distance it replicates �les just prior to the satisfying the request. Similarly,when the lookahead-1 algorithm saves service cost on a write, the amount saved canbe no more than the weight of a minimum Steiner tree which connects the droppedcopies to an undropped copy. But at some point in the past, at least one of thedropped copies must have been replicated over each edge in that Steiner tree. Hencefor each unit of distance saved on reads by the lookahead-1 algorithm, one �le wasmoved one unit of distance. The same holds for writes. The the total cost saved bythe lookahead-1 algorithm is 2D times the total movement cost. Both algorithms incurthe same movement cost, however.One may ask whether our service cost is too optimistic: could our algorithmsactually be implemented using only the control messages accounted for in the servicecost. Although we do not directly address this issue, our algorithms are essentiallydistributed in nature and can be implemented with only constant message overheadin the special case of uniform and tree networks.2. Preliminaries. We use the technique of work functions and o�set functionsintroduced by Chrobak and Larmore [9]. Let S be a set of states, one for each legalresidence set. Thus S is isomorphic to 2V n f;g. Let R(s) denote the residence setcorresponding to state s 2 S. We say the �le system is in state s if the currentresidence set is R(s); s 2 S. Let Y = fvr ; vwjv 2 V g be the set of possible requests,where vr and vw represent read and write requests at node v, respectively. A requestsequence � = (�1; : : : ; �p) is revealed to the on-line algorithm, with each �i 2 Y .Suppose the network is in state s when �i arrives. The algorithm will be charged aservice cost of ser(s; �i), where ser(s; �i) : S � Y�!R is as described in Section 1.1.After serving �i, the algorithm can move to a di�erent state t at a cost tran(s; t),where tran : S � S�!R is the minimum cost of moving between the two residencesets.The work function Wi(s) is the minimum cost of serving requests 1 to i, termi-nating in state s. Given �, a minimum cost solution can be found by a dynamicprogramming algorithm with the following functional equation:8 s 2 S; i 2 Z+; Wi(s) = mint2S fWi�1(t) + ser(t; �i) + tran(t; s)gwith suitable initializations. Let opti = mins2S Wi(s); i � 1, be the optimal cost ofserving the �rst i requests. We call !i(s) = Wi(s) � opti the o�set function valueat state s after request i has been revealed. De�ne �opti = opti � opti�1; it is theincrease in the optimal o�-line cost due to �i.Our on-line algorithmsmake decisions based on the current o�set values, !i(s); s 2S. Note that to compute the !i(s)'s and �opti's, it su�ces to know only the !i�1(s)'s.Since OPT (�) =Pj�ji=1�opti, to show that an algorithm A is c-competitive, we needonly show that for each reachable combination of o�set function, request, and �lesystem state, the inequality �CA + �� � c � �opti holds, where �CA is the costincurred by A and �� is the change in some de�ned potential function. If the totalchange in � is always bounded or non-negative, summing up the above inequalityover �, we have CA(�) � c �OPT (�) +B where B is some bounded value.The Steiner Tree Problem:We shall refer to a network design problem called the Steiner tree problem (STP) [24]which can be stated as follows. An instance of STP is given by a weighted undirected

www.manaraa.com

6 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANgraph G = (V;E), a weight function on the edges w : E�!Z+0 , a subset Z � V ofregular nodes or terminals, and a constant B0 2 Z+. The decision problem is to askif there exists a Steiner tree in G that includes all nodes in Z and has a total edgeweight no more than B0. STP is NP-complete even when G is restricted to bipartitegraphs with unit edge weights, or to planar graphs [12, 16]. Surveys on STP can befound in [13, 24]. On a tree network, the union of paths between all pairs of terminalsgives the optimal Steiner tree.3. Deterministic Algorithms for FAP on a Tree. We begin by introduc-ing some concepts that will be used in building both deterministic and randomizedalgorithms for �le allocation on trees.We say a residence set is connected if it induces a connected subgraph in G. Ona tree, if the residence set is always connected, each node without a copy of F caneasily keep track of R, and hence the nearest copy of F, by using a pointer. In fact,when G is a tree we can limit our attention to algorithms that maintain a connectedR at all times..Theorem 3.1. On a tree, there exists an optimal algorithm that always maintainsa connected residence set, i.e., given any (on-line or o�-line) algorithm A, there existsan algorithm A0 that maintains a connected R and CA0(�) � CA(�) for all �. If A ison-line, so is A0.Proof. Let R(A) and R(A0) be the residence sets maintained by A and A0, re-spectively. We simulate A on � and let A0 be such that at any time, R(A0) is theminimum connected set that satis�es R(A) � R(A0). Given R(A), on a tree, R(A0)is de�ned and unique.Since R(A) � R(A0), the reading cost incurred by A0 cannot be greater than thatby A. The same holds true for the writing cost issued at any node v, since R(A0)[fvgspans the unique minimum length Steiner tree for R(A) [fvg. So A0 does not incura greater read or write cost than A.Algorithm A0 does not need to carry out any replication unless A does, and onlyto nodes that are not already in R(A0). To maintain R(A) � R(A0), A0 should leavea copy of F along any replication path, this can be done without incurring any extracost. As R(A) � R(A0), A0 never needs to traverse a replication path longer thanthat by A for the same replication. Hence, A0 cannot incur a greater replication cost.Since a reallocation is a sequence of replications and discards of F, A0 maintains aconnected set at all times and does not incur a great cost than A in the reallocation.Henceforth we shall only consider algorithms that maintain a connected residenceset R at all times. When we say that an algorithm replicates to node v, we shall meanit leaves a copy of F at all nodes along the shortest path from the residence set to v.In a tree network we can make some additional simplifying assumptions. Suppose analgorithmA decides to move to residence set R0 from set R. This reallocation involvesa some sequence of replications and drops.Lemma 3.2. All replications can be performed before all drops without increasingthe total cost of the reallocation.Proof. Dropping a copy can only increase the cost of subsequent replications.Henceforth we assume that all algorithms comply with Lemma 3.2.Lemma 3.3. Let S = R0 n R be the nodes that gain a copy of F . Then F can bereplicated to the nodes of S in any order at total cost D � jT (R0) n T (R)j, where T (R)is the subtree induced by node set R.Proof. A copy of F must be sent across each edge in T (R0) n T (R) at least once.

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 7But in any order of replication, a copy cannot be sent across an edge more than once,because then both endpoints contain a copy of F .Henceforth we assume that all algorithms comply with Lemma 3.3.A useful tool in handling on-line optimization on trees is factoring [7, 10]. Itmakes use of the fact that any sequence of requests � and any tree algorithm can be\factored" into (n�1) individual algorithms, one for each edge. The total cost in thetree algorithm is equal to the sum of the costs in each individual edge game. For edge(a; b) we construct an instance of two-processor �le allocation as follows. The removalof edge (a; b) divides T into two subtrees Ta and Tb, containing a and b, respectively.A read or write request from a node in Ta is replaced by the same kind of requestfrom a, and a request from a node in Tb is replaced by the same request from b. LetA be an algorithm with residence set R(A). Algorithm A induces an algorithm onedge (a; b) as follows: if R(A) falls entirely in Ta or Tb then the edge algorithm isin state a or b, respectively; otherwise, the edge algorithm is in state ab. When theedge algorithm changes state, it does so in the minimum cost way (i.e. at most onereplication). This factoring approach is used in our algorithms for �le allocation on atree. For the rest of this paper, given an edge (a; b), we use Ta and Tb to representthe subtrees described above, s to denote the state the edge is in, and let the o�setfunctions triplet be !i = (!i(a); !i(b); !i(ab)), where !i(s) is the o�set function valueof state s after �i has arrived.Lemma 3.4. For algorithm A and request sequence �, let A(a;b) be the algorithminduced on edge (a; b), and �ab be the request sequence induced on edge (a; b). ThenCA(�) = X(a;b)2ECA(a;b)(�ab):Proof. We show that the cost incurred by any event contributes the same amountto both sides of the equation.For a write request at a node v, CA(�) increases by the weight of the uniqueSteiner tree, T 0, containing nodes in R(A)[fvg. In the induced problem of any edgee on T 0, the residence set and the request node are on opposite sides of e, and a writecost equal to e's weight is incurred. For other edges, v and the residence set lie onthe same side of e, and no cost is incurred in their induced problems. So both sidesof the equation increase by the same amount.For a read request at a node v, the same argument as in the write case can beused, replacing T 0 by the unique path from v to the nearest node with a copy of F.Both sides of the equation increase by the same amount.Suppose A moves from a residence set of R to R0, and consider the sequence ofreplications and discards that make up the reallocation process. We show by inductionon the length of this sequence that the movement cost to A is exactly equal to the sumof movement costs in the induced edge problems. Suppose that the �rst action in thesequence is to replicate F to node v. The cost to A is D times the sum of the lengthsof the edges on the shortest path from R to v. Since R is connected, the edges on thispath are exactly the edges that must replicate in their induced problems. Thus bothsides of the equation increase by the same amount. If the �rst action is a discard,then no costs are incurred by A or any of the induced edge algorithms.Lemma 3.5. Let OPT (�ab) be the cost incurred by an optimal edge algorithm for(a; b) on sequence �ab. Then P(a;b)2E OPT (�ab) � OPT (�).Proof. The Lemma follows by letting A in Lemma 3.4 be the optimal o�-linealgorithm for FAP on a tree, and noting CA(a;b)(�ab) � OPT (�ab) for any A and edge

www.manaraa.com

8 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN(a; b).It follows from Lemmas 3.4 and 3.5 that if A is an on-line algorithm such that on any�, and for each edge (a; b), CA(a;b)(�ab) � c �OPT (�ab) holds, then A is c-competitive.To construct a deterministic algorithm for the tree, we �rst construct a suitableoptimal algorithm for a single edge We then design the tree algorithm so that it inducesthis optimal edge algorithm in each edge, thereby guaranteeing competitiveness.3.1. An Optimal Deterministic Edge Algorithm. Let G = (a; b) be anedge, and S = fa; b; abg the set of states the �le system can be in|only node ahas a copy, only node b has a copy, and both a and b have a copy, respectively.We can assume G is of unit length, otherwise the o�sets and cost functions can bescaled to obtain the same results. We write the o�set functions as a triplet !i =(!i(a); !i(b); !i(ab)) and similarly for the work functions. Suppose the starting stateis a. Then W0 = (0; D;D). The ser and tran functions are given in Table 2. By thede�nition of the o�set functions, and since it is free to discard a copy of F, we alwayshave !i(ab) � !i(a); !i(b), and at least one of !i(a) and !i(b) is zero. Without loss ofgenerality, we assume a starting o�set function vector of !i = (0; k; l), 0 � k � l � D,after �i has arrived. Table 3 gives the changes in o�sets for di�erent combinations ofrequests and o�sets in response to the new request �i+1.tran(t; s) sa b aba 0 D Dt b D 0 Dab 0 0 0 ser(t; �i) �iar aw br bwa 0 0 1 1t b 1 1 0 0ab 0 1 0 1Table 2Transition and Service CostsCase 1: k � 1: �i+1 !i+1(a) !i+1(b) !i+1(ab) �opti+1ar 0 min(k + 1; l) l 0aw 0 min(k + 1; D) min(l+ 1;D) 0br 0 k � 1 l� 1 1bw 0 k � 1 l 1Case 2: k = 0: �i+1 !i+1(a) !i+1(b) !i+1(ab) �opti+1ar 0 min(1; l) l 0aw 0 1 min(l+ 1; D) 0br min(1; l) 0 l 0bw 1 0 min(l+ 1; D) 0Table 3Changes in O�setsLet s be the current state of R. Our algorithm speci�es the new required residenceset, R, after �i+1 has arrived and the o�sets have been updated; it assumes state a isa zero-o�set state.Algorithm Edge:(1) If s 6= ab and !i+1(s) = !i+1(ab), replicate, i.e., set s = ab.(2) If s = ab and !i+1(b) = D, drop at b, i.e., set s = a.Theorem 3.6. Algorithm DetEdge is strongly 3-competitive.

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 9Proof. We �rst show that for each request �j, �CEdge + �� � 3 � �optj (�)holds, for some function �(�) de�ned below. Let a be a zero-o�set state and we have!i = (0; k; l). At any time, we de�ne the potential function:�(s; k) = 8<: 2 �D � 2 � k if s = a2 �D � k if s = bD � k if s = abInitially, � = 0, and we always have � � 0. When !i = (0; 0; l) and s 6= ab, s can beconsidered to be in state a or b, and �(a; 0) = �(b; 0) = 2D. Note that !i = !i+1and �� = �opti = 0 hold in the following cases:(i) !i = (0; D;D) and �i+1 = ar or aw,(ii) !i = (0; l; l); l � 1 and �i+1 = ar, and(iii) !i = (0; 0; 0) and �i+1 = ar or br.Our algorithm ensures that �CEdge = 0 in these cases. Let use show that (�) holds forall possible combinations of state, request, and o�set. The o�sets and state variablebelow are the ones before the new request �i+1 arrives. We consider the k � 1 cases;the k = 0 cases are similar to that when k � 1 and �i+1 = ar or aw.Case 1: �i+1 = arWe have �opti+1 = 0. If s = a or ab, then L:H:S:(�) � 0 and (�) holds. If s = b, bythe last execution of the algorithm, we must have k < l. Then �CEdge = ��� = 1,and (�) holds.Case 2: �i+1 = awWe have �opti+1 = 0. If s = a, then L:H:S:(�) � 0 and (�) holds. If s = b or ab, wemust have k < D. Then �CEdge = ��� = 1, and (�) holds.Case 3: �i+1 = br or bwWe have �opti+1 = 1. In this case �CEdge � 1, �� � 2, and L:H:S:(�) � 3 hold.Inequality (�) also holds when DetEdge changes state: when DetEdge movesfrom state ab to state a, !i = (0; D;D) and �� = �CEdge = 0; whenDetEdgemovesto state ab �� = ��CEdge = �D. Hence, (�) holds for all possible combinations ofo�sets, requests, and residence set.We claim that no deterministic algorithm is better than 3-competitive for FAPon an edge. For migration, it is known that no deterministic algorithm can be betterthan 3-competitive on a single edge [7]. We show that given any on-line algorithmA for FAP there exists another on-line algorithm A0 such that (i) CA0(�) � CA(�)for any � with only write requests, and (ii) A0 always keeps only one copy of F, ata node in A's residence set, and (iii) whenever A has only one copy of F, A0 has acopy at the same node. Since A0 is a legal algorithm for any instance of the migrationproblem, and the optimal cost to process � without using replications is no less thanthe optimal cost with replications, A is c-competitive on write-only sequences only ifA0 is a c-competitive migration algorithm. This implies the claim.Algorithm A0 is obtained from A as follows. Initially, both A and A0 have a copyof F at the same node. The following rules are applied whenever A changes state.(1) If A replicates, A0 does not change state.(2) If A migrates, A0 follows.(3) If A drops a page, A0 follows to the same node.It follows from the rules above that (ii) and (iii) hold, and A0 cannot incur a writecost higher than that of A. Each movement of A0 in (1) or (2) corresponds to adistinct migration or earlier replication by A, respectively. So A0 cannot incur ahigher movement cost than A. The claim follows.

www.manaraa.com

10 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN3.2. An Optimal Deterministic Tree Algorithm. Recall that for each edgee = (a; b) on the tree, request sequence � induces a sequence �ab on (a; b). Thetree algorithm is based on factoring into individual edge subproblems and simulatingDetEdge on each subproblem. After r 2 � is served, for each edge e = (a; b) theinduced request rab is computed and the o�set vector for the induced subproblemis updated. The following algorithm is then executed, updating the residence set,R(Tree). Initially R(Tree) consists of the single node containing F.Algorithm Tree:(1) Examine each edge (u; v) in any order, and simulate the �rststep of AlgorithmDetEdge in the induced subproblem. IfDetEdgereplicates to one of the nodes, say v, in the induced subproblem, thenadd v to R(Tree) and replicate to v.(2) Simulate step 2 of DetEdge for all edges. For any node v, ifthe edge algorithm for an incident edge e = (u; v) requires deletingnode v from e's residence set in e's induced problem, mark v.(3) Drop at all marked nodes.To show that DetTree is 3-competitive, we will show that it chooses a connectedresidence set and for each edge, it induces the state required by DetEdge. This isnot immediately obvious, because the requirements of DetEdge on one edge mightcon
ict with those on another edge. For example, one edge might want to drop acopy that another edge has just replicated.We begin by analyzing the structure of the o�set functions in the induced edgeproblems. For the rest of this subsection, the o�set values and functions for eachedge (a; b) refers to that results from the induced sequence �ab. The next lemmacharacterizes the o�set distribution between two adjacent edges.Lemma 3.7. The following properties hold:(A) At any time, there exists a root node r, such that R = frg corresponds to azero o�set state in the induced problems of all edges.(B) For any edge (x; y) on the tree, de�ne Si(x; y) = !i(xy) � !i(x). Then for anyadjacent edges (x; y) and (y; z), the inequality Si(x; y) � Si(y; z) holds, 8 i.Following from the earlier de�nitions (see the beginning of Section 3.2), the claim(A) above states that there is a node r such that for any edge (a; b) where a is nearerto r than b, state a is a zero o�set state for the edge. Note that the location of theroot node r may not be unique, and its location changes with requests. The lemmaimplies the following conditions.Corollary 3.8.(C) Let (x; y) be an edge in T such that a root r is in Tx. Let z 6= x be a neighborof y, and edges (x; y) and (y; z) have o�sets (0; kxy; lxy) and (0; kyz; lyz),respectively. Then(C.1) lxy � lyz;(C.2) lxy � kxy � lyz � kyz;(C.3) kxy � kyz, and(C.4) if kyz = 0, then kxy = 0 and lxy = lyz hold.(D) Let (x; y) and (y; z) be adjacent edges with a root r in the subtree that is rootedat y and formed from removing the two edges from T . Let the o�sets in theedges be (kxy; 0; lxy) and (0; kyz; lyz), respectively. Then lxy � (lyz � kyz) holds.Proof. (of Lemma 3.7) We use induction on the number of requests. Initially, letr be the node holding the single copy of F ; all the edges have o�set vectors (0; D;D)

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 11and the lemma holds trivially. We assume the lemma holds for t 2 Z+0 revealedrequests and show that it remains valid after �t+1 has arrived at a node w. We �rstshow how to locate a new root. Let P represent the path from r to w. Unless speci�edotherwise, the o�sets referred to below are the ones before �t+1 arrives. We choosethe new root, r0, using the following procedure.Procedure FindRoot(1) If (i) w = r or (ii) w 6= r and all the edges along P have o�sets of theform (0; k; l), k � 1, Then r0 = r,(2) Otherwise, move along P from r toward w, and cross an edge if it has o�setvector of the form (0; 0; l) until we cannot go any further or when w is reached.Pick the node where we stop as r0.Let us show that r0 is a valid root for the new o�sets. We picture P as a chain ofedges starting from r, going from left to right, ending in w. If the condition in step(1) of the algorithm is satis�ed, �t+1 corresponds to a request at the zero o�set statefor all edges. By Table 3, r remains a valid root node. Suppose (2) above is executed.For any edge that is not on P, or is on P but is to the right of r0, its zero-o�set stateremains the same. Node r0 is a valid root node for these edges. By (C.4), edges alongP with o�sets of the form (0; 0; l) must form a connected subpath of P, starting fromr and ending in r0. They have the same value for the parameter l. By Table 3, theiro�sets change from (0; 0; l) to (1; 0;minfl+ 1; Dg) or (min(1; l); 0; l), and r0 is a validroot node for them. Hence (A) holds for our choice of r0 above.To show that (B) holds, we consider any two adjacent edges (x; y) and (y; z)whose removal will divide T into three disjoint subtrees: Tx; Ty, and Tz , with rootsx; y, and z, respectively. We show that for di�erent possible positions of r and w, (B)remains valid after �t+1 has arrived, i.e., St+1(x; y) � St+1(y; z) holds when �t+1 isa write or a read , when r 2 Tx; Ty, or Tz , and when w 2 Tx; Ty, or Tz. We assume(B) holds before �t+1 arrives.Suppose �t+1 is a read request, r 2 Tx, and w 2 Tx. For edge (x; y), !t =(0; kxy; lxy) and !t+1 = (0;min(kxy + 1; lxy); lxy). For edge (y; z), !t = (0; kyz; lyz)and !t+1 = (0;min(kyz + 1; lyz); lyz). Inequality St+1(x; y) � St+1(y; z) follows fromSt(x; y) � St(y; z) or (C.1). Condition (B) can be shown to hold in other situationsby a similar case analysis. Please refer to the Appendix for the complete case analysis.Thus (B) holds for request (t+ 1) and the lemma follows.Theorem 3.9. Algorithm DetTree is strongly 3-competitive.Proof. We show thatDetTree induces DetEdge on each tree edge. The theoremthen follows from Lemmas 3.4 and 3.5 and Theorem 3.6.We proceed by induction on the number of requests. Initially, R(Tree) consistsa single node. Suppose R(Tree) is connected after the �rst t 2 Z+0 requests, andfor each edge (a; b), the state induced by R(Tree) is equal to the state desired byDetEdge when run on �ab. Consider the processing of request t+ 1.Step (1): Replication. We do a subinduction on the number of replications done inStep (1), and show that no replication is in con
ict with the state desired by anyedge.Suppose that processing edge (a; b) in Step (1) causes F to be replicated to a.Then r 2 Ta, R(Tree) lies in Tb, inducing state s = b, and !t+1 = (0; l; l). This followsfrom the de�nition of DetEdge, the de�nition of the induced subproblem, and theinductive hypothesis. Let Q be the path from b to the nearest node in R(Tree).If Q 6= fbg, then, to avoid con
ict, each edge along Q must also require replicationacross it. From (A) and (C.2) in Theorem 3.7, we see that each edge (x; y) in Q has

www.manaraa.com

12 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANan o�set of the form !t+1 = (0; l0; l0) where x is nearer to b than y, and requires areplication. A similar argument holds for the case when s = a and !t+1 = (0; 0; 0).Step (2): Marking Nodes to Drop: Again we perform a subinduction on the numberof markings done in Step (2), and show that no marking is in con
ict with the statedesired by any edge and that a connected residence set results.Suppose that processing edge (a; b) in Step (2) causes b to be marked. This occursbecause (a; b) has !t+1 = (0; D;D), r 2 Ta, r a write, and s = ab.Since R(Tree) is connected by hypothesis, both a and b are in R(Tree), and thenodes in Tb with a copy of F span a connected subtree of Tb, with b as its root. Letus call it T 0b. If T 0b 6= fbg, each edge (x; y) in T 0b is in state s = xy. By (A) and (C.3)in Theorem 3.7, (x; y) must have o�set !t+1 = (0; D;D), with x nearer to b than y is.Under DetEdge, (x; y) needs to drop the copy of F in node y. Hence all the nodesin T 0b are required to be removed from R(Tree), the new R(Tree) remains connected,and no edges are in con
ict.Thus R(Tree) is connected, all induced edge algorithms match DetEdge, andDetTree is 3-competitive.4. Randomized Algorithms for FAP on a Tree. Our approach to buildinga randomized tree algorithm is the same as our approach in the deterministic case.We give a randomized algorithm for a two-point space, RandEdge, that is basedon counter values assigned at the nodes. By factoring, we obtain from RandEdge a(2+1=D)-competitive algorithm,RandTree, for �le allocation on a tree. RandTreerequires the generation of onlyO(logD) random bits at the beginning of the algorithm,after which it runs completely deterministically. It is simpler than the tree algorithmin [19], which can require the generation of
(logD) random bits after each requestis served.4.1. An Optimal Randomized Edge Algorithm, RandEdge. Let edge e =(a; b). We maintain counters ca and cb on nodes a and b, respectively. They satisfy0 � ca; cb � D and (ca + cb) � D. Our algorithm maintains a distribution of Rdependent on the counter values. Initially, the node with a copy of F has countervalueD, and the other node has counter value 0. The counter values change accordingto the following rules. On a read request at a, we increment ca if ca < D. On a writerequest at a, if (ca + cb) > D, we decrement cb; if (ca + cb) = D and ca < D, weincrement ca. The counters change similarly for a request at b. There is no change inthe counter values in other cases.Algorithm RandEdge always maintains a distribution of R such thatpe[a] = 1� cbD ;(1a) pe[b] = 1� caD ; and(1b) pe[ab] = ca + cbD � 1(1c)Observe that the probability of having a copy of F at node v 2 fa; bg is cv=D.In order to maintain this distribution, RandEdge simulates D deterministicalgorithms, numbered from 1 to D. The moves of each deterministic algorithm areconstructed (deterministically) on-line, according to rules given below. Before the�rst request, one of the D algorithms is picked at random. RandEdge then makes

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 13the same moves as the chosen deterministic algorithm. Thus pe[s], s 2 fa; b; abg, isthe proportion of algorithms in state s, and the expected cost incurred by RandEdgeis the average of the costs incurred by the D algorithms.We de�ne the D algorithms that achieve the probability distribution in (1). Sup-pose that initially, only node a has a copy of F . Then initially the D algorithms areplaced in state a. The following changes are made after a new request, �i, has arrived.Without loss of generality, we assume the request arises at node a. (The ca and cbvalues below refer to the counter values just before �i arrives.)� There is no change in the algorithms if there is no change in the countervalues.� Case 1: if �i = ar and ca < D, the lowest-numbered algorithm in state bmoves to state ab.� Case 2: if �i = aw, (ca + cb) > D, the lowest-numbered algorithm in state abmoves to state a.� Case 3: if �i = aw, (ca+cb) = D, and ca < D, the lowest-numbered algorithmin state b moves to state ab.Lemma 4.1. RandEdge is feasible and maintains the probability distribution in(1). Proof. By feasible we mean that whenever a move must be made in Cases 1, 2,and 3, there is some algorithm available to make the move. The choice of lowest-numbered algorithm is only to emphasize that the choice must be independent ofwhich algorithm RandEdge is actually emulating.The lemma holds initially with ca = D and cb = 0. We prove the lemma byinduction on the requests, and assume it holds before �i arrives. If there is no changein counter values after �i has arrived, the lemma holds trivially. By the inductionhypothesis, in case 1 above, since ca < D and pe[b] > 0, at least one of the Dalgorithms is in state b; in case 2, since (ca + cb) > D and pe[ab] > 0, there isan algorithm in state ab; in case 3, since ca < D, there is an algorithm in state b.Hence, RandEdge is feasible. It can be veri�ed that the changes in the algorithmsimplement the probability distribution in (1) for the new counter values.Theorem 4.2. RandEdge is strongly (2 + 1=D)-competitive.Proof. For each node v 2 fa; bg, we maintain the potential function:�v = (D+12 +PD�1j=cv(2� jD) OPT has a copy of F at vPcvj=1 jD otherwisewhere OPT represents the adversary. Let the overall potential function � = �a +�b � (D + 1)=2. Initially, � = 0; at any time, � � 0. We show that in response toeach request and change of state,E(�CRandEdge) +E(�Mi) + �� � (2 + 1=D) ��OPT:(2)holds, where �OPT , E[�CRandEdge] and E(�Mi) are the cost incurred by the eventon OPT , and the service and movement costs incurred on RandEdge, respectively.The ca and cb values below are the counter values just before the new request �iarrives.Case 1: Request �i = ar .If ca = D, inequality (2) holds trivially. Suppose ca < D. We haveE(�CRandEdge) = 1� caD ; E(�Mi) = 1;

www.manaraa.com

14 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN�� = � �2 + caD OPT has a copy of F at aca+1D otherwiseIt follows that if OPT has a copy of F at a when �i arrives, L:H:S:(2) = �OPT = 0;otherwise, L:H:S:(2) = (2 + 1=D) = (2 + 1=D) ��OPT . Inequality (2) holds.Case 2: Request �i = aw and (ca + cb) > D.We have E(�CRandEdge) = cbD ; E(�Mi) = 0;�� = � 2� cb�1D OPT has a copy of F at b�cbD otherwise ; andL:H:S:(2) = � 2 + 1D OPT has a copy of F at b0 otherwiseInequality (2) holds.Case 3: Request �i = aw and (ca + cb) = D.If ca = D, L.H.S.(2)=0 and (2) holds trivially. Suppose ca < D. We haveE(�CRandEdge) = 1� caD ; E(�Mi) = 1;�� = � �2 + caD OPT has a copy of F at aca+1D otherwise ; andL:H:S:(2) = � 0 OPT has a copy of F at a2 + 1D otherwiseHence, (2) holds.Case 4: OPT changes state.When OPT changes state, E(�CRandEdge) = E(�Mi) = 0. It can be checked fromthe de�nition of � that when OPT replicates, �OPT = D and �� � (2D+1) hold;when OPT discards a copy of F, �� � 0.Since (2) holds for all possible events, by Theorem 4.6 RandEdge is strongly(2 + 1=D)-competitive.4.2. An Optimal Randomized Tree Algorithm|RandTree. We extendRandEdge to a randomized algorithm for FAP on a tree, T , by means of factoring.Our algorithm,RandTree, induces RandEdge on each edge for the induced requestsequence for the edge.Description of Algorithm RandTree. RandTree internally simulatesD de-terministic algorithms. Each of them maintains a residence set that spans a subtreeof T . Initially, the residence set for each of them is the single node that contains F.One of the D simulated algorithms is picked uniformly at random at the beginning,and RandTree behaves exactly the same as the particular algorithm chosen.We maintain counters ca and cb for each edge (a; b) in the tree. Using the factoringapproach (see section 3.2), we obtain an induced request sequence �ab for (a; b). Thecounter values change according to the same rules as described in the single edgecase (section 4.1), using �ab. RandTree responds to each request and maintains an(induced) distribution as required by RandEdge in (1) for each of the edges.

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 15Read Request. Suppose the new request, �i, is a read request at a node g. LetT be rooted at g, and e = (a; b) be an edge with a nearer to g than b is. The ca andcb values described below are the counter values before �i arrives. The edges can beclassi�ed into three types:� type 1: edges with ca = D and cb = 0;� type 2: edges with ca = D and cb > 0, and� type 3: edges with ca < D.RandEdge requires no change in probability values for the �rst two types of edges;for type 3 edges, it requires pe[b] decreases by 1=D and pe[ab] goes up by 1=D. Forany node v, we use T (v) to denote the subtree of T rooted at v. RandTree changesthe subtree con�gurations maintained by the D algorithms by using the followingprocedure (�g. 1).(1) Let F be the forest of trees formed by all the type 3 edges.(2) While there exists a tree T 0 2 F with at least one edge, Do(2.1) Let x be a leaf node in T 0 and P be the path from x to the rootnode of T 0.(The root node of T 0 is the node in T 0 that is nearest to g.)(2.2) Pick any one of the D algorithms that maintains a subtree, Z,that includes node x and lies entirely in T (x).Make that algorithm replicate along P , i.e., replace Z by Z [P .(2.3) Remove the edges in P from T 0 and update the forest F .Fig. 1. Algorithm RandEdge (Read Requests)Lemma 4.3. RandTree implements the required changes for all the edges for aread request.Proof. We prove the lemmaby induction on the requests. Suppose thatRandTreeinduces RandEdge on all edges before �i arrives. Let y be the parent node of x. IfRandTree is feasible, i.e., it can be executed, it implements the changes required byRandEdge as described above, for all edges. We show that this is the case.If x is a leaf node of T , since (x; y) is a type 3 edge, p(x;y)[x] > 0 and one of theD algorithms must have the single node fxg as its tree con�guration.Otherwise, suppose all the descending edges of x are of type 1. Let (x;w) be oneof them. Then p(x;w)[xw] = p(x;w)[w] = 0; none of the algorithms maintains a subtreewith any edge in T (x). Since p(x;y)[x] > 0, one of the algorithms must have fxg asits subtree.Otherwise, suppose x has descending type 2 edges. Let (x;w) be any one of them.Then p(x;w)[w] = 0 and p(x;w)[xw] > 0. Thus each of these edges is contained in thesubtree of at least one of the algorithms, and none of the algorithms has its subtree inT (w). Since p(x;y)[x] > 0, at least one of these subtrees must lie in T (x) and containsnode x.Hence, our algorithm is feasible and the lemma holds.Write Request. Suppose �i = rw. We use the same notation as in the readrequest case. The edges can be classi�ed into three types:� type 1: edges with (ca + cb) > D;� type 2: edges with (ca + cb) = D and ca < D, and� type 3: edges with (ca + cb) = D and ca = D.

www.manaraa.com

16 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANRandEdge requires no change in probability values for the type 3 edges; for type 1edges, it requires pe[ab] decreases by 1=D and pe[a] increases by the same amount;for type 2 edges, it requires pe[b] decreases by 1=D and pe[ab] increases by the sameamount. RandTree performs the following (�g. 2).(1) Let F be the forest of trees formed by all the type 1 edges.(2) While there exists a tree T 0 2 F with at least one edge, Do(2.1) Let g0 be the root node of T 0 and x be one of its children nodes inT 0.(2.2) Pick an algorithm that has a subtree Z that includes edge (g0; x).(2.3) If Z is contained in T 0, make the algorithm replace Z by the single-node subtree fg0g; otherwise, replace Z by the tree formed byedges in (Z � T 0).(2.4) Replace T 0 in F by the subtrees formed by T 0 � Z.(3) Let F be the forest of trees formed by all the type 2 edges.(4) While there exists a tree T 0 2 F with at least one edge, Do(4.1) Let x be a leaf node of T 0 and P be the path from x to the rootnode of T 0.(4.2) Pick any one of the D algorithms that maintains a subtree, Z,that includes node x and lies entirely in T (x).Make that algorithm replicates along P , i.e., extends Z to Z [P .(4.3) Remove the edges in P from T 0 and update the forest F .Fig. 2. Algorithm RandEdge (Write Requests)Lemma 4.4. RandTree implements the required changes for all the edges for awrite request.Proof. We prove by induction and assume RandEdge is induced on all the edgesbefore �i arrives. If RandTree is feasible, it implements the required changes for allthe edges. We show that this is the case.Consider the �rst loop of the algorithm (in step (2)). Since p(g0;x)[g0x] > 0, subtreeZ must exist. RandTree removes edges from Z that are contained in T 0. Note thatthe pe[ab] values for type 2 and 3 edges are zero; RandTree processes edges in T 0 ina top-down fashion, and con�guration (Z � T 0) is always a connected subtree. Thusthe �rst loop can be executed.Consider the second loop of the algorithm (in step (4)). Let y be a parent nodeof x. Then p(x;y)[xy] = 0 and p(x;y)[x] > 0 hold. If x is a leaf node in T , one of theD algorithms must have fxg as its subtree. If x has a descending type 1 edge, bythe �rst part of the algorithm, one of the D algorithms must have fxg as its subtreeafter running the �rst loop of the algorithm. Suppose all the descending edges of xare type 3 edges. Let (x;w) be a type 3 edge; then p(x;w)[w] = p(x;w)[xw] = 0 andp(x;w)[x] = 1. Since p(x;y)[x] > 0, one of the algorithms must have fxg as its subtree.Hence, the algorithm is feasible and the lemma follows.Lemmas 4.3 and 4.4 imply that RandTree induces RandEdge on all the edges.Theorem 4.5 follows from the above lemmas and Theorem 4.2.Theorem 4.5. Algorithm RandTree is strongly (2 + 1=D)-competitive for FAPon a tree against an oblivious adversary.4.3. Lower Bound. We show that the competitive ratio, (2 + 1=D), obtainedabove is the best possible for �le allocation against an oblivious adversary, even if Gis a single edge.

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 17Theorem 4.6. No on-line algorithm for the �le allocation problem on two points(a; b) is c-competitive, for any c < (2 + 1=D).Proof. Let A be any randomized algorithm for the �le allocation problem on twopoints. We de�ne a potential function 	, and give a strategy for generating adversaryrequest sequences such that:(i) for any C there is a request sequence � with optimum cost � C;(ii) the cost to RandEdge on � is at least (2 + 1=D)OPT (�)�B00, for B00 boundedindependent of �;(iii) 	 is bounded; and(iv) for each request generated by this adversary,�CA +�	 � �CRandEdge(3) If conditions (ii), (iii), and (iv) hold for an adversary sequence �, then summing(3) over the sequence givesCA(�) � (2 + 1=D) �OPT (�)� Bwhere B is bounded. By condition (i), the adversary can make OPT (�) arbitrarilylarge, so there is no constant B0 independent of � such that CA(s) < (2 + 1=D) �OPT (�) +B0. Hence A cannot be c-competitive for c < 2 + 1=D.We now de�ne the adversary's strategy. We assume that both the on-line ando�-line algorithms start with a single copy of F at a. Our adversary will only generaterequests that result in o�set functions of the form (0; i; i), where 0 � i � D. A zero-cost self-loop is a request such that the o�set function is unchanged and �opt = 0. Bya theorem of [18], there is always an optimal on-line algorithm that incurs 0 expectedcost on a zero-cost self loop. We assume A has this property. This simpli�es theadversary's strategy, although the result can still be proved without this assumption.Suppose that the current o�set function is (0; i; i), and let pi be probability thatRandEdge is in state a. Suppose A is in state a with probability q. If q < pi theadversary requests aw, otherwise the adversary requests br . When i = D we willhave q = 1 (aw is a zero-cost self-loop if i = D) and so the adversary will requestbr. Similarly, when i = 0, q = 0 (ar is a zero-cost self-loop) and the adversaryrequests aw. Therefore the adversary can always generate a next request using theabove rules, and the request sequence can be made arbitrarily long. Since there areonly D o�set functions that can be generated by this strategy, an arbitrarily longsequence of requests must cycle through the o�set functions arbitrarily often. Notice,however, that the only cycles which cost OPT nothing are zero-cost self-loops. Sincethe adversary never uses these requests, all cycles have non-zero cost, so by continuinglong enough the adversary can generate request sequences of arbitrarily large optimumcosts. Hence condition (i) hold.Next we consider condition (ii). Recall ca and cb, the counter values maintainedby RandEdge. We claim that if the o�set function is (0; i; i), then ca = D andcb = D�i. This is true initially, when F is located only at a, and i = D. By inspectionof RandEdge one can verify that the whenever the adversary generates request br,cb increases by 1, and that whenever the adversary generates aw, cb decreases by 1.Hence pi = i=D and the expected movement cost incurred by RandEdge is 1 on brand 0 on aw. With reference to the proof of Theorem 4.2, note that the amortizedcost to RandEdge is exactly 2+1=D times the cost to OPT on any request that theadversary might generate, assuming OPT does not move following the request. (Theadversary never generates br if cb = D or aw if cb = 0.) The amortized cost incurred

www.manaraa.com

18 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANby RandEdge is therefore exactly 2+1=D times the cost incurred by an \optimum"algorithm that only ever has a copy of F at a. It is possible to show that this costreally is optimum for our sequences, but in any case it is certainly lower-bounded bythe true optimum cost, and so (ii) holds.Now de�ne 	 to be D �maxf0; q � pig. This is trivially bounded by 1, so (iii)holds. Finally, we must verify (3).Case 1: The adversary requests aw.In this case the new o�set function must be (0; i + 1; i + 1). Suppose that afterthe request A has mass q0 at a. Then �CA = 1 � q + D � maxf0; q � q0g, �	 =D�maxf0; q0�pi+1g�D�maxf0; q�pig, and �CRandEdge = 1�pi. Since q < pi < pi+1,�CA +�	 = 1� q +D �maxf0; q� q0g+D �maxf0; q0 � pi+1g �D �maxf0; q� pig� 1� q� 1� pi= �CRandEdgeCase 2: The adversary requests br.In this case the new o�set function must be (0; i � 1; i � 1). Suppose that after therequest A has mass q0 at a. Then �CA = q+D �maxf0; q�q0g, �	 = D �maxf0; q0�pi�1g �D �maxf0; q � pig, and �CRandEdge = pi + 1. Since q � pi > pi�1,�CA +�	 = q +D �maxf0; q � q0g+D �maxf0; q0 � pi�1g �D �maxf0; q� pig� q +D(q � pi�1) �D �maxf0; q� pig= q +D (pi � pi�1)= q + 1� pi + 1= �CRandEdge5. Migration on a Uniform Network. We give a (2 + 1=(2D))-competitiverandomized algorithm against an oblivious adversary for migration on a uniform net-work. This competitive ratio is optimal even for a single edge [10]. Let G be acomplete graph on n nodes labeled 1 to n. Initially, only node 1 has a copy of F.Our algorithm is based on the o�sets calculated on-line. Let S = f1; : : : ; ng and thealgorithm is in state s if the single copy of F is at node s. We have the cost functionsser(t; �i) = � 0 if t = �i1 otherwise tran(t; s) = � 0 if t = sD otherwiseand initiallyW0 = (0; D; : : : ; D).Suppose the ith request is served and the new o�set for each node, s, is calculated.Let vs = D � !i(s), k = maxfj 2 SjPjm=1 vm < 2Dg, and � = 2D �Pkm=1 vm.Algorithm Migrate: The algorithm maintains a probability distribution such thatthe probability, p[s], that a node, s, contains F is as follows:If k < n, p[s] = 8<: vs=2D if s � k�=(2D) if s = k + 10 otherwise

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 19If k = n, p[s] = 8<: vs=2D if s � k and vs < D(vs + �)=(2D) if s � k and vs = D0 otherwiseAfter a new request has arrived, our algorithmmoves to di�erent states with transitionprobabilities that minimize the total expected movement cost, while maintaining thenew required distribution.Theorem 5.1. Given any �, the expected cost incurred byMigrate, E[Cmig(�)],satis�es E[Cmig(�)] � [2 + 1=(2D)] �OPT (�)Proof. We show that after a request has arrived,E[�Cmig] + E[�M] + �� � �2 + 12D� ��opti(4)holds, where E[�Cmig] is the expected cost incurred by Migrate, E[�M] is theexpected movement cost, �� is the change in the potential function:� = nXs=1 vsXj=1�12 + j2D�� (3D + 1)=4:Initially, � = 0. At any time, since at least one vs = D, we have � � 0.An o�set table similar to Table 3 for �le allocation can be constructed. Sincemigration is equivalent to FAP with only write requests, it can be seen that if request�i+1 is at a node s with !i(s) = 0, we have !i+1(s) = 0, the o�sets for all other stateswill increase by one, subject to a maximum of D, and �opti+1 = 0. If �i+1 is ata node s with !i(s) > 0, the o�set for state s will decrease by one, all other o�setsremain the same, and �opti+1 = 1.Case 1: A request at s such that vs < D.In this case, we have �opti+1 = 1, and vs increases by one.If s � k then E[�Cmig] � [1 � vs=(2D)]. It can be veri�ed that E[�M] � 1=2,�� � 1=2 + (vs + 1)=(2D), and L:H:S:(4) � 2 + 1=(2D) = R:H:S:(4).If s > k then the movement cost is zero. We also have E[�Cmig] � 1, �� =1=2 + (vs + 1)=(2D) � 1 + 1=(2D); inequality (4) also holds.Case 2: A request at s such that vs = D.We have �opti+1 = 0. For each j 2 S�fsg such that vj > 0, vj decreases by 1. Eachsuch vj contributes �[1=2 + vj=(2D)] to ��, and no more than 1=2 to E[�M]. Wehave E[�Cost] = (1� ps), where ps is the probability mass at s, and1� ps =Xj 6=s pj � Xj 6=s;vj>0 vj2DHence L:H:S:(4) � 0.6. Replication. We give upper and lower bounds on the performance of ran-domized on-line algorithms for the replication problem.

www.manaraa.com

20 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN6.1. Randomized On-Line Algorithms. Let eD = (1 + 1=D)D and �D =eD=(eD � 1). So �D�!e=(e � 1) � 1:58 as D�!1. We describe randomized algo-rithms that are �D-competitive against an oblivious adversary on the uniform networkand trees. First, consider a single edge (r; b) of unit length. Initially, only r containsa copy of F . Suppose algorithmA is �-competitive, and it replicates F to node b withprobability pi after the ith request at b, wherePi pi = 1. The pi's and � must satisfy,for each k 2 Z+0 , E[CA(�) j k] � � � � k k � D� �D k > D ;where E[CA(�) j k] = kXi=1 pi � (D + i) + 1� kXi=1 pi! � kis the expected cost incurred by A when � contains k requests at b. The optimalo�-line strategy is to replicate a copy of F to b before the �rst request arrives ifk � D, and does not replicate otherwise. Algorithm A incurs a cost of (D + i) if itreplicates right after serving the ith request, i � k; otherwise it incurs a cost of k.An optimal randomized algorithm is given by a set of pi values that satisfy the aboveinequalities for all k, such that � is minimized. We note that the conditions aboveare identical to those for the on-line block snoopy caching problem on two caches in[15]. Karlin et al. [15] showed that the optimal � value is �D. This is achieved whenpi = [(D+1)=D]i�1=[D(eD�1)], 1 � i � D, and other pi's are zero. The above singleedge algorithm can be applied to a uniform network by replicating F to each node vafter the ith request at v, with a probability of pi | another example of factoring.Theorem 6.1. There exists a randomized algorithm that is strongly �D-competitiveagainst an oblivious adversary for replication on a uniform network.We can extend the single edge algorithm to a tree, T , rooted at r, the node thatcontains F initially. The algorithm only responds to requests at nodes not in thecurrent residence set.Algorithm TREE: Keep a counter ci on each node i 6= r. Initially,all ci = 0. Suppose a request arrives at a node x, and w is the nodenearest to x that contains a copy of F . After serving the request, thecounters for all the nodes along the path from w to x are increasedby one. Let the nodes along the path be w = i0; i1; : : : ; iq = x, q � 1.Perform the following procedure each time after a request has beenserved:(1) Let pci0 = 1.(2) For j = 1; : : : ; q, Do(2.1) With probability pcij =pcij�1 , replicate to node ij from node ij�1.(2.2) If F is not replicated to ij , STOP.Theorem 6.2. Algorithm TREE is strongly �D-competitive against an obliviousadversary for replication on a tree network.Proof. Without loss of generality, we assume that a connected R is always main-tained by any solution. Let x 6= r be any node and y its parent. Before x obtains acopy of F , a cost equal to the weight of (x; y) is incurred on the edge for each requestat a node in the subtree rooted at x. (This follows because R is connected and theunique path from x to r passes through (x; y).) By our single edge algorithm, the

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 21algorithm TREE is �D-competitive if, for each node x 6= r, a copy of F is replicatedto x after the ith request at the subtree rooted at x, with a probability pi. It can beshown by induction on the requests that before x acquires a copy of F, the counteron x records the number of requests that have arrived at the subtree rooted at x,and these counters form a non-increasing sequence on any path moving away fromr. Hence, the values pcij =pcij�1 = (1 + 1=D)cij�cij�1 � 1, j = 2; : : : ; q, are de�nedprobability values. It is simple to verify that each time a node at the subtree rootedat x receives a request, a copy of F is replicated to x with probability pcx , where cxis x's new counter value. The theorem follows.6.2. Lower Bound. We show that no randomized algorithm can be better than2-competitive against an adaptive on-line adversary. We use n to denote the numberof nodes in G.Theorem 6.3. Let � be any positive function of n and D, taking values between0 and 1. No on-line algorithm is better than (2� �(D;n))-competitive for replicationagainst an adaptive on-line adversary.Proof. Let node a have the initial copy of F and let (a; b) be any edge in G.Let A be any on-line algorithm which replicates to b after the jth request at b withprobability pj, j 2 Z+. The adversary issues requests at b until A replicates oruntil N" requests have been issued, whichever �rst happens. Algorithm A incurs anexpected cost of E[CA(�)] = N"Xj=1 pj � (j +D) + 1Xj=N"+1 pj �N"(5)We choose di�erent N"'s for two di�erent cases.SupposeP1j=1 pj � j > D. Let N" be the minimumpositive integer that is greaterthan D and such thatPN"j=1 pj � j � D. Given D, parameter N" is a �nite and uniqueconstant. The adversary replicates to b before the �rst request arrives, incurring acost of D. From equation (5), we have E[CA(�)] � D +PN"j=1 pj � j � 2D, giving aratio of at least 2.Suppose P1j=1 pj � j � D. Let " = �(n;D). The adversary does not replicate andincurs an expected cost of N"Xj=1 pj � j + 1Xj=N"+1 pj �N"(6)>From (5), we haveE[CA(�)] = N"Xj=1 pj � j +D � N"Xj=1 pj + 1Xj=N"+1 pj �N"(7a) � (1 + N"Xj=1 pj) � N"Xj=1 pj � j + 1Xj=N"+1 pj �N"(7b)Given the pj 's, one can choose N" so that PN"j=1 pj is arbitrarily close to 1. Sincethe series P1j=1 j � pj is bounded, one can also choose N" so that P1j=N"+1 pj �N" isarbitrarily close to zero. Thus, by comparing (6) and (7b), we see that given any ",one can choose a �nite N" so that the ratio is as close to (2� ") as desired.

www.manaraa.com

22 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN7. O�-Line Replication and File Allocation. We show that the o�-line repli-cation problem is NP-hard, and the o�-line �le allocation problem on the uniformnetwork can be solved in polynomial time.7.1. The O�-Line Replication Problem. Awerbuch et al. �nd interestingrelationships between the on-line Steiner tree problem [14, 23] and on-line FAP. Weshow that the (o�-line) replication problem is NP-hard by using a straight-forwardreduction from the Steiner tree problem [12, 16] (see Section 2 for the de�nition).The proof involves creating an instance for the replication problem in which (D + 1)requests are issued at each of the terminal nodes for the Steiner tree problem instance,forcing the optimal algorithm to replicate to these nodes.Theorem 7.1. The replication problem is NP-hard, even if G is is bipartite andunweighted, or if G is planar.7.2. O�-line Solution For File Allocation on a Uniform Network. Weshow that the o�-line �le allocation problem on a uniform network can be solved inpolynomial time by reducing it to a min-cost max-
ow problem. A similar reductionwas obtained by Chrobak et al. [8] for the k-server problem. We convert an instanceof the FAP on a uniform network on nodes 1; : : : ; n, to a min-cost max-
ow problemon an acyclic layered network, N , with O(n � j�j) nodes and O(n2j�j) arcs. Initiallynode 1 has a copy of F. An integral maximum
ow in N de�nes a dynamic allocationof F in the uniform network. The arcs costs in N are chosen so that the min-costmax-
ow in N incurs a cost di�ers from the minimum cost for FAP on the uniformnetwork by a constant. Network N is constructed as follows:Nodes: Network N has (j�j + 1) layers of nodes, (2n � 1) nodes in each layer, asource node s and a sink node t. Layer k, 0 � k � j�j, has nodes fvk1 ; : : : ; vkng andfuk1; : : : ; uk(n�1)g. Each node allows a maximum
ow of one unit into and out of it. Thevkj nodes correspond to the nodes in the uniform network. Layer k of N correspondsto the state of the uniform network after �k has been served.Arcs: There is an arc going from each layer k node to each layer (k + 1) node, 0 �k � (j�j � 1); there is an arc from each layer j�j node to t, arc (s; v01), and arcs(s; u0j); 1 � j � (n� 1). All the arcs have unit capacity.A Flow: A maximum
ow in N has a value of n. Given integer arc costs, there is amin-cost max-
ow solution with only an integral
ow of either 0 or 1 in each arc. A
ow of 1 into a vkj represents the presence of a copy of F at node j just before requestk arrives. If the
ow comes from a v(k�1)i , it represents a copy of F being moved fromnode i to node j after serving the (k�1)st request; if the
ow comes from a u(k�1)i , itrepresents a replication to node j. A
ow from a v(k�1)j to a ukw represents the copy ofF at j is dropped after �(k�1) is served. Thus an integral
ow in N de�nes a strategyfor relocating copies of F. Since there are (n � 1) u nodes in each layer, an integralmax-
ow must include a
ow of 1 unit into at least one of the v nodes in each layer.This corresponds to the requirement that there is always at least a copy of F in theuniform network.Edge Costs: Edge costs are chosen so that the optimal
ow has cost equal to theoptimal o�-line cost for FAP minus the number of read requests, J , in �. Arcs withone end point at s or t have zero costs. Let (a; b) be any other arc, going betweenlayer k and (k+1). Its cost is equal to the sum of its associated movement and servicecosts. Suppose b is v(k+1)i . Then (a; b)'s associated movement cost is D unless a isvki . If �(k+1) is a write at some node other than node i, the service cost is 1; if �(k+1)is a read at node i, the service cost is �1. The costs for all other cases are zero. The

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 23movement and service costs account for the cost for replication and serving requests,except a node is charged �1 when a read request arrives and it has a copy of F . If weadd J to the cost of the optimal
ow, thus charging each read request 1 in advance,the sum is equal to the cost of an optimal dynamic allocation of F.Using the algorithm in [21] for solving the min-cost max-
ow problem on acyclicnetworks, FAP on a uniform network can be solved in polynomial time.Theorem 7.2. An optimal (o�-line) �le allocation on a uniform network can befound in O(n3 � j�j � (1 + logn j�j)) time.8. Open Problems. Interesting open problems include �nding a strongly com-petitive randomized algorithm for FAP on a uniform network. Awerbuch et al. [2]conjecture that if there exists a cn-competitive algorithm for the on-line Steiner treeproblem [14, 23], then there exists a O(cn)-competitive deterministic algorithm forFAP. This conjecture is still open. For the migration problem, there is a gap betweenthe best known bounds [4, 10]. REFERENCES[1] S. Albers and H. Koga, New On-Line Algorithms for the Page Replication Problem, inProceedings of the Fourth Scandinavian Workshop on Algorithmic Theory, vol. 824 ofLecture Notes in Computer Science, Aarhus, Denmark, July 1994, Springer-Verlag, pp. 25{36.[2] B. Awerbuch, Y. Bartal, and A. Fiat, Competitive Distributed File Allocation, in Proceed-ings of the 25th ACM Symposium on Theory of Computing, 1993, pp. 164{173.[3] B. Gavish and O. R. L. Sheng, Dynamic File Migration in Distributed Computer Systems,Communications of the ACM, 33 (1990), pp. 177{189.[4] Y. Bartal, M. Charikar, and P. Indyk, On Page Migration and Other Relaxed Task Systems,in Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'97, New Orleans, Louisiana, U.S.A., 1997.[5] Y. Bartal, A. Fiat, and Y. Rabani, Competitive Algorithms for Distributed Data Manage-ment, in Proceedings of the 24th Annual ACM Symposium on the Theory of Computing,1992, pp. 39{50.[6] S. Ben David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the Power ofRandomization in Online Algorithms, Algorithmica, 11 (1994), pp. 2{14.[7] D. L. Black and D. D. Sleator, Competitive Algorithms for Replication and Migration Prob-lems, Tech. Report CMU-CS-89-201, Department of Computer Science, Carnegie MellonUniversity, 1989.[8] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan, New Results on Server Prob-lems, SIAM J. Disc. Math., 4 (1991), pp. 172{181.[9] M. Chrobak and L. L. Larmore, The Server Problem and On-line Games, in Proceedings ofthe DIMACS Workshop on On-Line Algorithms, American Mathematical Society, Febru-ary, 1991.[10] M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook, Page Migration AlgorithmsUsing Work Functions, in Proceedings of the 4th International Symposium on Algorithmsand Computation, ISAAC '93, vol. 762 of Lecture Notes in Computer Science, Hong Kong,1993, Springer-Verlag, pp. 406{415.[11] D. Dowdy and D. Foster, Comparative Models of The File Assignment Problem, ComputingSurveys, 14 (1982).[12] M. R. Garey and D. S. Johnson, The Rectilinear Steiner Tree Problem is NP-complete,SIAM J. Appl. Math., 32 (1977), pp. 826{834.[13] F. K. Hwang and D. Richards, Steiner Tree Problems, Networks, 22 (1992), pp. 55{89.[14] M. Imase and B. M. Waxman, Dynamic Steiner Tree Problem, SIAM J. Disc. Math., 4 (1991),pp. 369{384.[15] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, Competitive RandomizedAlgorithms for Non-Uniform Problems, in Proceedings of the 1st ACM-SIAM Symposiumon Discrete Algorithms, 1990, pp. 301{309.[16] R. M. Karp, Reducibility Among Combinatorial Problems, in Complexity of ComputerCompu-tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85{103.

www.manaraa.com

24 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YAN[17] H. Koga, Randomized On-line Algorithms for the Page Replication Problem, in Proceedingsof the 4th International Symposium on Algorithms and Computation, ISAAC '93, vol. 762of Lecture Notes in Computer Science, Hong Kong, 1993, Springer-Verlag, pp. 436{445.[18] C. Lund and N. Reingold, Linear Programs for Randomized On-Line Algorithms, in Pro-ceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 382{391.[19] C. Lund, N. Reingold, J. Westbrook, and D. Yan, On-Line Distributed Data Management,in Proceedings of the 2nd Annual European Symposium on Algorithms, ESA '94, vol. 855of Lecture Notes in Computer Science, Utrecht, The Netherlands, 1994, Springer-Verlag,pp. 202{214.[20] N. Reingold, J. Westbrook, and D. D. Sleator, Randomized Competitive Algorithms forThe List Update Problem, Algorithmica, 11 (1994), pp. 15{32.[21] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, Pennsylvania,1983.[22] J. Westbrook, Randomized Algorithms for Multiprocessor Page Migration, SIAM J. Comput.,23 (1994), pp. 951{965.[23] J. Westbrook and D. C. K. Yan, The Performance of Greedy Algorithms for the On-LineSteiner Tree and Related Problems, Math. Systems Theory, 28 (1995), pp. 451{468.[24] P. Winter, Steiner Problem in Networks: A Survey, Networks, 17 (1987), pp. 129{167.Appendix: Complete Proof for (B) in Lemma 3.7. The following is thecomplete proof for condition (B) in Lemma 3.7. It will be shown thatSi(x; y) � Si(y; z)(8)holds for i = (t + 1) after request (t + 1) has arrived, by considering the change ino�set values using table 1, for all possible locations of the root node r, request nodew, and o�set vectors. In each case, the required inequality follows from the propertythat all o�sets satisfy 0 � k � l and the assumption that (8) holds initially for i = t.We will be referring to the conditions (C.1) to (C.4), and (D), that are implied by(8) for i = t. We use L:H:S: and R:H:S: to denote the left- and right-hand sides ofthe inequality under consideration, respectively.Suppose the request is a READ request:Case 1: r 2 Tx and w 2 TxFor (x; y) : !t = (0; kxy; lxy) and !t+1 = (0;min(kxy + 1; lxy); lxy).For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; lyz); lyz).St+1(x; y) � St+1(y; z) follows from St(x; y) � St(y; z) or (C.1).Case 2: r 2 Ty and w 2 TyFor (x; y) : !t = (kxy; 0; lxy) and !t+1 = (min(kxy + 1; lxy); 0; lxy).For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; lyz); lyz).St+1(x; y) � St+1(y; z) , lxy �min(kxy + 1; lxy) � lyz, follows from (D).Case 3: r 2 Tx and w 2 TyFor (x; y) : !t = (0; kxy; lxy) and !t+1 = � (0; kxy � 1; lxy � 1) if kxy � 1(min(1; lxy); 0; lxy) if kxy = 0For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; lyz); lyz).kxy � 1: St+1(x; y) � St+1(y; z) , lxy � 1 � lyz , follows from (C.1).kxy = 0: St+1(x; y) � St+1(y; z) , lxy �min(1; lxy) � lyz , follows from (C.1).Case 4: r 2 Tx and w 2 TzFor (x; y) : !t = (0; kxy; lxy) and !t+1 = � (0; kxy � 1; lxy � 1) if kxy � 1(min(1; lxy); 0; lxy) if kxy = 0For (z; y) : !t = (0; kyz; lyz) and !t+1 = � (0; kyz � 1; lyz � 1) if kyz � 1(min(1; lyz); 0; lyz) if kyz = 0

www.manaraa.com

ON-LINE DISTRIBUTED DATA MANAGEMENT 25kxy; kyz � 1 : St+1(x; y) � St+1(y; z) , lxy � lyz, follows from (C.1).kxy = kyz = 0 : By (C.4), lxy = lyz ; hence St+1(x; y) = St+1(y; z) holds in this case.kxy � 1; kyz = 0 : By (C.3), this case cannot happen.kxy = 0; kyz � 1 : St+1(x; y) � St+1(y; z) , lxy � min(1; lxy) � lyz , follows from(C.1).Case 5: r 2 Ty and w 2 TzFor (x; y) : !t = (kxy; 0; lxy) and !t+1 = (min(kxy + 1; lxy); 0; lxy)For (z; y) : !t = (0; kyz; lyz) and !t+1 = � (0; kyz � 1; lyz � 1) if kyz � 1(min(1; lyz); 0; lyz) if kyz = 0kyz � 1: St+1(x; y) � St+1(y; z) , lxy �min(kxy + 1; lxy) � lyz, follows from (D).kyz = 0:We need to show that St+1(x; y) � St+1(y; z) , lxy � min(kxy + 1; lxy) � lyz �min(1; lyz) holds, given St(x; y) � St(y; z) , lxy � kxy � lyz holds initially. Theinequality holds because lxy � lxy = 0 = lyz � lyz � R:H:S:, and lxy � kxy � 1 �lyz � 1 � R:H:S:.Suppose the request is a WRITE request:Case 1: r 2 Tx and w 2 TzFor (x; y) : !t = (0; kxy; lxy) and !t+1 = � (0; kxy � 1; lxy) if kxy � 1(1; 0;min(lxy + 1; D)) if kxy = 0For (y; z) : !t = (0; kyz; lyz) and !t+1 = � (0; kyz � 1; lyz) if kyz � 1(1; 0;min(lyz + 1; D)) if kyz = 0kxy; kyz � 1 : St+1(x; y) � St+1(y; z) , lxy � lyz, follows from (C.1).kxy � 1; kyz = 0 : By (C.3), this case cannot happen.kxy = kyz = 0 : By (C.4), lxy = lyz ; hence St+1(x; y) = St+1(y; z) holds in this case.kxy = 0; kyz � 1 : St+1(x; y) � St+1(y; z) , min(lxy + 1; D) � 1 � lyz, follows fromSt(x; y) � St(y; z) , lxy � lyz .Case 2: r 2 Ty and w 2 TzFor (x; y) : !t = (kxy; 0; lxy) and !t+1 = (min(kxy + 1; D); 0;min(lxy + 1; D))For (y; z) : !t = (0; kyz; lyz) and !t+1 = � (0; kyz � 1; lyz) if kyz � 1(1; 0;min(lyz + 1; D)) if kyz = 0kyz � 1: We need to show St+1(x; y) � St+1(y; z) ,(9) min(lxy + 1; D)�min(kxy + 1; D) � lyz holds, givenSt(x; y) � St(y; z) , lxy � kxy � lyz holds initially.It can be proved as follows. If kxy = D then L:H:S: = 0 � R:H:S:.If kxy < D, then L:H:S: � lxy + 1� (kxy + 1) � lyz = R:H:S: Hence (9) holds.kyz = 0: We need to show thatSt+1(x; y) � St+1(y; z) ,(10) min(lxy + 1; D)�min(kxy + 1; D) � min(lyz + 1; D)� 1; holds, given

www.manaraa.com

26 C. LUND, N. REINGOLD, J. WESTBROOK, and D. YANSt(x; y) � St(y; z) , lxy � kxy � lyz holds initially.If lyz < D, (10) follows from (9). If kxy = D, then L:H:S: = 0 � R:H:S:. Supposelyz � (D � 1) and (kxy + 1) � D. In this case L:H:S: � lxy � kxy � lyz = R:H:S:.Hence (10) holds.Case 3: r 2 Ty and w 2 TyFor (x; y) : !t = (kxy; 0; lxy) and !t+1 = (min(kxy + 1; D); 0;min(lxy + 1; D)).For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; D);min(lyz + 1; D)).We need to show that St+1(x; y) � St+1(y; z) , min(lxy+1; D)�min(kxy+1; D) �min(lyz+1; D) holds, given St(x; y) � St(y; z) , lxy�kxy � lyz holds initially, whichfollows from (10).Case 4: r 2 Tx and w 2 TyFor (x; y) : !t = (0; kxy; lxy) and !t+1 = � (0; kxy � 1; lxy) if kxy � 1(1; 0;min(lxy + 1; D)) if kxy = 0For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; D);min(lyz + 1; D))kxy � 1: St+1(x; y) � St+1(y; z) , lxy � min(lyz + 1; D), follows from St(x; y) �St(y; z) , lxy � lyzkxy = 0:St+1(x; y) � St+1(y; z) , min(lxy + 1; D) � 1 � min(lyz + 1; D), follows fromSt(x; y) � St(y; z) , lxy � lyzCase 5: r 2 Tx and w 2 TxFor (x; y) : !t = (0; kxy; lxy) and !t+1 = (0;min(kxy + 1; D);min(lxy + 1; D))For (y; z) : !t = (0; kyz; lyz) and !t+1 = (0;min(kyz + 1; D);min(lyz + 1; D))St+1(x; y) � St+1(y; z) , min(lxy+1; D) � min(lyz+1; D), follows from St(x; y) �St(y; z) , lxy � lyz .Thus we have shown that (B) holds after �t+1 has arrived.

